

FDH Engineering, Inc., 6521 Meridien Drive Raleigh, NC 27616, Ph. 919.755.1012

Structural Analysis for SBA Network Services, Inc.

300' Guyed Tower

SBA Site Name: Boiling Springs 2 NC SBA Site ID: NC01884-B-01 AT&T Site ID: 478-601

FDH Project Number 146H961400

Analysis Results

Tower Components	95.8%	Sufficient
Foundation	90.1%	Sufficient

Prepared By:

Anjali Guli, El Project Engineer

Reviewed By:

Christopher G Ply, PE Vice President - Structural Engineering NC PE License No. 027825

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 (919) 755-1012 info@fdh-inc.com

November 19, 2014

Prepared pursuant to ANSI/TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas and the 2012 North Carolina State Building Code

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
Conclusions	3
Recommendations	3
APPURTENANCE LISTING	
RESULTS	
GENERAL COMMENTS	8
LIMITATIONS	8
APPENDIX	9

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the existing guyed tower located in Bolivia, NC to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the *Structural Standard for Antenna Supporting Structures and Antennas, ANSI/TIA-222-G* and the *2012 North Carolina State Building Code*. Information pertaining to the existing/proposed antenna loading, current tower geometry, the member sizes, foundation dimensions and geotechnical data was obtained from:

- Cellxion (Drawing No. TSBA00398) original design drawings dated February 17, 2000
- Law Engineering and Environmental Services, Inc. (Project No. 30720-9-3511) Geotechnical Summary Report and foundation design dated February 10, 2000
- Law Engineering and Environmental Services, Inc. (Project No. 30720-9-3511) foundation design dated February 10, 2000
- FDH Engineering (Project No. 04-0618-T) EIA/TIA Inspection Report dated June 28, 2004
- SBA Network Services, Inc.

The basic design wind speed per the ANSI/TIA-222-G standard and the 2012 North Carolina State Building Code is 140 mph without ice and 30 mph with 1/4" radial ice. Ice is considered to increase in thickness with height. Furthermore, this structure as analyzed as a Class II structure in Exposure Category C with a topographical factor of 1 and Spectral Response Accelerations of S_s =0.328 and S_1 =0.105.

Note: Per Section 2.7.3 of the *ANSI/TIA-222-G* standard, the seismic/earthquake loading effects can be ignored if spectral response acceleration at short periods (S_s) is less than or equal to 1.00 which is the case in Hamilton County, Ohio where the maximum value of Ss is 0.19. The tower's location mandates a design S_s of less than 1.00, thus seismic loading was not considered as part of the analysis of this structure.

Conclusions

With the existing and proposed antennas from AT&T in place at 300 ft, the tower meets the requirements of the *ANSI/TIA-222-G* standard and the *2012 North Carolina State Building Code* provided the **Recommendations** listed below are satisfied. Furthermore, provided the foundations were designed and constructed to support the original design reactions (see Law Engineering and Environmental Services, Inc. Project No. 30720-9-3511), the foundations should have the necessary capacity to support the existing and proposed loading. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the ANSI/TIA-222-G standard and the 2012 North Carolina State Building Code are met with the existing and proposed loading in place, we have the following recommendations:

- 1. Feed lines must be installed as shown in **Figure 1**.
- 2. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client.

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in **Table 1**. If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (ft)	Description	Feedlines	Carrier	Mount Elevation (ft)	Mount Type
300	(6) Decibel DB982G90T2E-M w/ Mount Pipe(3) Kathreinscala 741-989 w/ Mount Pipe	(12) 2-1/4" (1) 3/8"	AT&T	300	(3) T-Frames
285	· · · · · · · · · · · · · · · · · · ·		Church Planters of America	285	Direct
240	(3) Antel BXA-70063-8CF-2 (2) CSS AXP18-60-2 (1) CSS XP16-80-2 (1) CSS X7C-FRO-660 (1) CSS X7C-FRO-860 (1) CSS X7C-865 (6) Andrew 641280-DF DiplexerS	(12) 1-5/8"	Verizon	240	(3) T-Frames

Proposed Carrier Final Loading:

Antenna Elevation (ft)	Description	Feedlines	Carrier	Mount Elevation (ft)	Mount Type
300	 (3) Kathrein 742-352 w/ Mount Pipe (3) Commscope SBNHH-1D65C w/ Mount Pipe (2) Raycap DC6-48-60-18-8F (3) Ericsson RRUS 11 	(12) 2-1/4" (1) 3/8" RET (1) 7/8" Fiber (4) 7/8" DC	AT&T	300	(3) T-Frames (Kenwood P/N T1684KT12- 4114)

RESULTS

The following yield strength of steel for individual members was used for analysis:

Table 2 - Material Strength

Member Type	Yield Strength
Legs	50 ksi
Bracing	36 ksi

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. *Note: Capacities up to 105% are considered acceptable*. **Table 4** displays the maximum foundation reactions.

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the Appendix for detailed modeling information

Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	% Capacity	Pass Fail
T1	300 - 280	Leg	2	71.7	Pass
		Diagonal	1 1/2	50.0	Pass
		Horizontal	1 1/4	52.6	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1 1/4	25.6	Pass
		Bottom Girt	1 1/4	7.8	Pass
		Guy A@293.194	3/4	87.8	Pass
		Guy B@293.194	3/4	92.1	Pass
		Guy C@293.194	3/4	90.4	Pass
		Torque Arm Top@293.194	L4x4x3/8	32.8	Pass
		Torque Arm Bottom@293.194	L4x4x3/8	45.8	Pass
T2	280 - 260	Leg	2 1/4	59.5	Pass
		Diagonal	1 3/8	29.2	Pass
		Horizontal	1	18.4	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	11.9	Pass
		Bottom Girt	1	6.9	Pass
Т3	260 - 240	Leg	2 1/4	59.0	Pass
		Diagonal	1 3/8	43.7	Pass
		Horizontal	1	27.8	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	8.7	Pass
		Bottom Girt	1	19.0	Pass
T4	240 - 220	Leg	2 1/4	75.7	Pass
		Diagonal	1 1/2	70.2	Pass
		Horizontal	1 1/4	64.2	Pass
		Secondary Horizontal	3/4	0.0	Pass

Revision Date: 06/17/11

Structural Analysis Report SBA Network Services, Inc. SBA Site ID: NC01884-B-01 November 19, 2014

Section No.	Elevation ft	Component Type	Size	% Capacity	Pass Fail
		Top Girt	1 1/4	30.4	Pass
		Bottom Girt	1 1/4	13.8	Pass
		Guy A@226.806	3/4	93.5	Pass
		Guy B@226.806	3/4	94.7	Pass
		Guy C@226.806	3/4	92.3	Pass
		Torque Arm Top@226.806	L4x4x3/8	35.3	Pass
		Torque Arm Bottom@226.806	L4x4x3/8	42.7	Pass
T5	220 - 200	Leg	2 1/4	69.6	Pass
		Diagonal	1 3/8	51.2	Pass
		Horizontal	1	33.5	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	21.0	Pass
		Bottom Girt	1	10.6	Pass
T6	200 - 180	Leg	2 1/4	61.2	Pass
10	200 100	Diagonal	1 1/2	35.1	Pass
		Horizontal	1 1/4	18.9	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1 1/4	6.4	Pass
		Bottom Girt	1 1/4	12.4	Pass
T7	180 - 160		2 1/4	69.0	
17	180 - 160	Leg			Pass
		Diagonal	1 1/2	38.0	Pass
		Horizontal	1 1/4	22.4	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1 1/4	11.8	Pass
		Bottom Girt	1 1/4	8.1	Pass
		Guy A@173.194	5/8	95.8	Pass
		Guy B@173.194	5/8	95.1	Pass
		Guy C@173.194	5/8	95.2	Pass
		Top Guy Pull- Off@173.194	2x3/8	20.7	Pass
Т8	160 - 140	Leg	2 1/4	63.2	Pass
		Diagonal	1 1/4	52.1	Pass
		Horizontal	1	24.9	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	12.9	Pass
		Bottom Girt	1	15.9	Pass
Т9	140 - 120	Leg	2 1/4	79.4	Pass
		Diagonal	1 1/2	38.5	Pass
		Horizontal	1 1/4	22.3	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1 1/4	10.9	Pass
		Bottom Girt	1 1/4	11.9	Pass
		Guy A@126.806	5/8	92.3	Pass
		Guy B@126.806	5/8	92.1	Pass
		Guy C@126.806	5/8	92.1	Pass
		Top Guy Pull-		21.5	
T10	120 - 100	Off@126.806	2x3/8 2 1/4		Pass
T10	120 - 100	Leg		75.2	Pass
		Diagonal	1 3/8	47.1	Pass
		Horizontal	1	31.1	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	20.2	Pass
		Bottom Girt	1	11.7	Pass
T11	100 - 80	Leg	2 1/4	75.2	Pass

Revision Date: 06/17/11

Structural Analysis Report SBA Network Services, Inc. SBA Site ID: NC01884-B-01 November 19, 2014

Section No.	Elevation ft	Component Type	Size	% Capacity	Pass Fail
		Diagonal	1 1/4	53.9	Pass
		Horizontal	1	25.9	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	11.6	Pass
		Bottom Girt	1	15.9	Pass
T12	80 - 60	Leg	2 1/4	71.3	Pass
		Diagonal	1 1/4	69.1	Pass
		Horizontal	1	36.1	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	17.5	Pass
		Bottom Girt	1	19.0	Pass
		Guy A@66.8056	5/8	75.5	Pass
		Guy B@66.8056	5/8	75.6	Pass
		Guy C@66.8056	5/8	75.6	Pass
		Top Guy Pull- Off@66.8056	2x3/8	26.0	Pass
T13	60 - 40	Leg	2 1/2	68.9	Pass
		Diagonal	1 1/4	69.0	Pass
		Horizontal	1	33.7	Pass
		Secondary Horizontal	3/4	0.0	Pass
		Top Girt	1	20.3	Pass
		Bottom Girt	1	13.4	Pass
T14	40 - 20	Leg	2 1/2	69.2	Pass
		Diagonal	1 1/4	45.7	Pass
		Horizontal	1	22.7	Pass
		Secondary Horizontal	3/4	0.1	Pass
		Top Girt	1	12.6	Pass
		Bottom Girt	1	13.5	Pass
T15	20 - 6.80729	Leg	2 1/2	68.0	Pass
		Diagonal	1 1/4	53.9	Pass
		Horizontal	1	28.7	Pass
		Secondary Horizontal	3/4	0.1	Pass
		Top Girt	1	15.2	Pass
T16	6.80729 - 0	Leg	2 1/2	48.1	Pass
		Horizontal	L4x4x3/8	52.8	Pass
		Top Girt	L4x4x3/8	17.7	Pass

Table 4 - Maximum Base Reactions

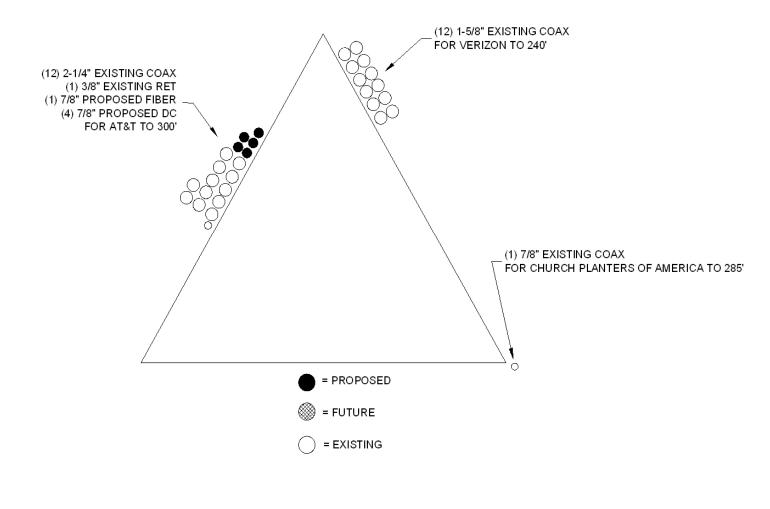
		Analysis* A-222-G)		Design A-222-F)	
Reaction	Horizontal	Vertical	Horizontal Vertical		
Tower Base	3 k	267 k	2 k	298 k	
Anchor	135 k	124 k	114 k	102 k	

*Current analysis reactions are within an allowable factor of 1.35 per the ANSI/TIA-222-G standard when the original design reactions are based on an allowable stress design.

GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.

LIMITATIONS


All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

Structural Analysis Report SBA Network Services, Inc. SBA Site ID: NC01884-B-01 November 19, 2014

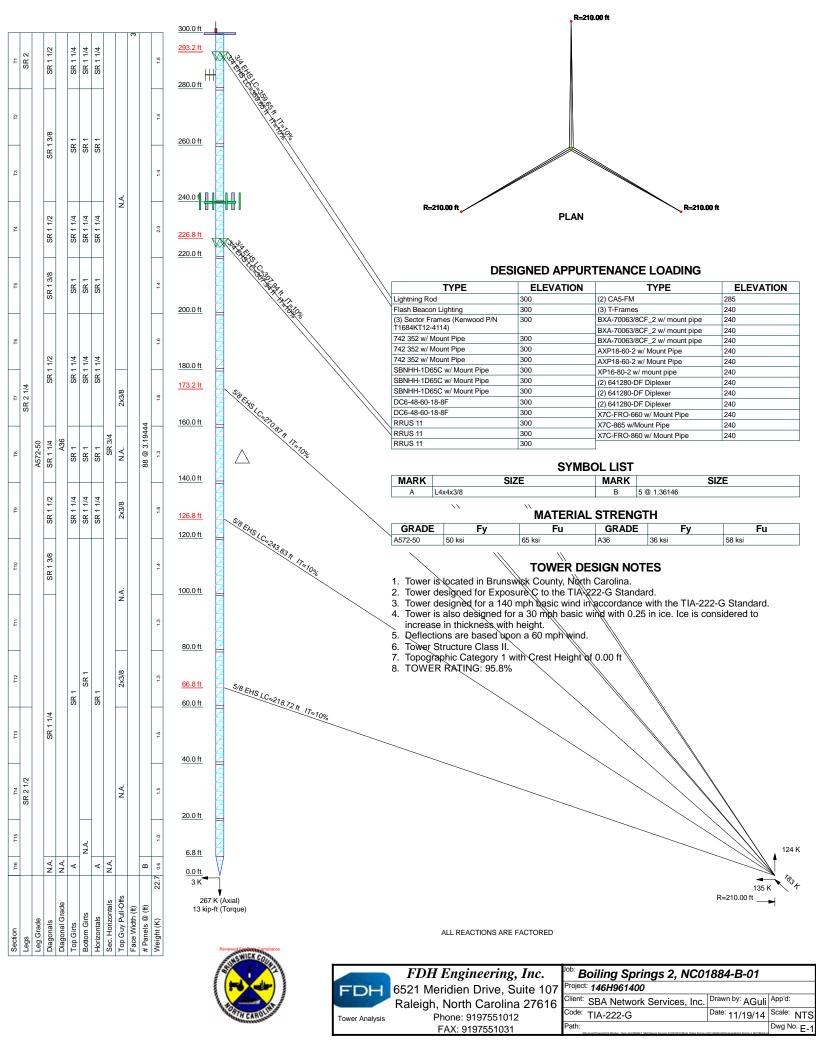

APPENDIX

Figure 1 – Assumed Feedline Layout

